
CSC+Google Tech Talk
9/17/2014

Sign-in: http://goo.gl/UKnvyX

http://goo.gl/UKnvyX
http://goo.gl/UKnvyX

Building a mobile
platform

Wesley Tarle (wt@google.com)

About Wes

● UWaterloo '08
● Joined Google 3 years ago
● Google+ platform TL

○ Sign-in with Google
○ Google Play services
○ G+ and Games widgets and APIs

● Google Mobile Platform

A story

Why a mobile platform?

● Increased scope of impact (scale across
many developers)

● Improved security and privacy for users
● Spam and abuse considerations
● App quality improves

Challenges

● Quality of static portions
● Binary compatibility of dynamic parts
● Performance considerations (native types)
● Keeping track of clients (who's calling what)
● Difficult to test

Mobile platform parts

● Android
● iOS
● Mobile web
● REST/RPC

API or Widget

API
● Quotas, spam &

abuse checks
● Allows custom UX
● Restrictive access

to data

Widget
● Native experience
● Controlled UX
● Complete access to

data

API and Widget

Public API

Private API

Widget

App

Android

● Binder provides IPC mechanisms
○ Minimal code in client .jar
○ Binary compatibility requirement
○ Multi-process architectures

● Intents and activities
○ Allow for privileged implementations of widgets
○ Serve from master APK

Service APK (e.g. Google Play services)App APK

Android physical model

Public API

Private API

Widget

App

Stub

Stub

Client JAR

Service background process

Android process model

Service UI processApp UI process

Public API Private API

Widget

App

Stub

Stub

Android in-process widget

Service processApp process

Private APIWidgetApp Stub

Another story

iOS

● No general IPC mechanism
○ Single-process execution or traumatic UX
○ Libraries distrubuted statically (no binary

compatibility requirement)
● Basic support for intenting

○ Defined "schemes" for going from app-to-app
○ No background services from third-party developers

App bundle
Client framework

iOS physical model

Public API Private API

App Widget'

Stub

Mobile Safari

Widget

Service app (Google+)

Widget

App process

iOS process model

Public API Private API

Widget

App

Stub
Mobile Safari

Widget

Service app (Google+)

Widget

● Challenges: multiple processes, multiple
platforms (device + cloud)

● Approach: decouple components by faking
parts

● Definitions: unit test, API test, integration
test, monkey test. 80/15/5

● Manual test harness

Testing

Testing Widgets

Unit tests

Integration
Tests

Monkey
tests

Widget
Fake Private
API

ts

Testing APIs (Backwards Compatibility)

Public API
tests Stub Public API

Private API
tests

Fake

Private API

Unit tests Unit tests

Unit tests

Hermetic Environment

Testing Cloud

Cloud tests

Thank You! Questions?

uwaterloostudents@google.com

