
Match

match is a special form like cond

But instead of having clauses that evaluate to
either true or false, it takes one item and tests it
against the set of clauses

1

Match

match is a special form like cond

But instead of having clauses that evaluate to
either true or false, it takes one item and tests it
against the set of clauses

(match num-presents
 [0 "Christmas is ruined!"]
 [1 "I guess that's alright"]
 [2 "Good"]
 [_ "Great"])

2

Match

(match num-presents
 [0 "Christmas is ruined!"]
 [1 "I guess that's alright"]
 [2 "Good"]
 [_ "Great"])

Compare that to using cond

(cond
 [(= num-presents 0) "Christmas is ruined!"]
 [(= num-presents 1) "I guess that's alright"]
 [(= num-presents 2) "Good"]
 [#t "Great"])

3

Match

If that’s all that match did, it would still be useful,
but not very often. But match can do much more,
it can match against structures and lists

(match (list 1 2 3)
 [(list 1 2 3) 'something]
 ['() 'nothing]
 [_ 'something-else])
=> 'something

4

Bindings

The full power of match is in it’s ability to give
names to things.

(define (rotate lst)
 (match lst

 [(list) (list)]
 [(list a) (list a)]
 [(list a b) (list b a)]
 [(list a b c) (list c a b)]))

> (rotate '(1 2 3))
'(3 1 2)

5

Bindings

I find this really nice when writing recursive code,
as I don’t need to use first or rest anymore,
and I never accidentally apply them to the empty
list

(define (map f lst)
 (match lst

 ['() '()]
 [(cons x xs)

(cons (f x)
(map f xs))]))

Just a note, you see this pattern of a list being
matched into the first and rest and them being
called x and xs, (pronouced like "excess") or a
and as, or b and bs. It help keep the relationship
between the variables clear. 6

Bindings

Another example

(define (filter pred lst)
 (match lst

 [(cons x xs) #:when (pred x)
(cons x (filter pred xs))]

 [(cons _ xs) (filter pred xs)]
 ['() '()]))

7

Warning

Note one tricky point, empty is not a literal. On
line 87 of racket/collects/list.rkt there is
the line of code:

(define empty '())

This means, if you try and match against it, the
same thing happens like you try and match against
a different variable, like x

(match (list 1 2 3)
 [empty 'true]
 [_ 'false])

Evaluates to 'true!!!

8

Haskell

Now, everything I’ve shown off here is the basic
functionally of pattern matching, and if only use
this, I think it’ll make your code more clear. Also,
pattern matching like this is avalible in Haskell

map f [] = []
map f (x : xs) = f x : map f xs

This will no longer be true from here on, as
Racket’s match is actually quite sophisticated.
Checkout the documentation for the full list of
things it can do.

9

Equality

If we repeat a binding, what happens? Racket
checks to see if the two instances are equal for us.

(match (list 1 2)
[(list a a) 'same]
[(list a b) 'different])

=> 'different

(match (list 1 1)
[(list a a) 'same]
[(list a b) 'different])

=> 'same

10

...

Racket also lets you use three dots in a row "..." to
collect many elements into a list. For example:

(match (list 1 2 3 4)
 [(list a as ...) (list as a)])
=> '((2 3 4) 1)

as as is '(2 3 4).

Note, it can match 0 items.

11

...

This even works inside nested lists, which is really
cool. Say we were storing students’ information in
structs:

(struct student (name mark))

(match (list (student "Alice" 89)
(student "Bob" 87)
(student "Eve" 88))

 [(list (student name mark) ...)
(average mark)])

=> 88

will return the average mark of the class

12

and and or

You can also take conjunctions and disjunctions of
patterns.

(and pat1 pat2) matches when both pat1
and pat2 match. Likewise (or pat1 pat2)
matches when either pattern matches.

(match '(1 (2 3) 4)
 [(list _ (and a (list _ ...)) _) a])
=> '(2 3)

(match '(1 2 3)
 [(or (list 1 _ _) (list 2 _ _)) 'yup])
=> 'yup

13

and

and is quite useful since it can also bind names.
This is a common pattern in my code.

(match (map read-parse (rest line))
 [(and children

(list
 (list 'terminal "LPAREN" "(")
 (list 'typed-rule lvalue-type _ ...)
 (list 'terminal "RPAREN" ")")))

(cons 'typed-rule
(cons lvalue-type

(cons line
children)))])

14

?

Sometimes you want to transform the data before
matching it, that’s where (? pred pat ...)
comes in handy. It takes a predicate which must
return a true value before the patterns can match.
You can supply no extra patterns if you want.

(match '(1 2 3)
 [(list (? odd? a) 2 _) a])
=> 1

15

app

In a more general way, you can use
(app f pat ...) to match against the result of
any function, not just predicates.

(match '(1 2)
 [(app length 2) 'yes])
=> 'yes

16

Match extenders

We can write any of these previous helpers
ourselves, or any other ones we can thing ok.

(define-match-expander aba?
 (lambda (stx)

 (syntax-case stx ()
 [(_ a b)

#'(list a b a)])))
(match (list 1 2 1)
 [(aba? 1 2) 'worked])

17

