Finding Shortest Paths

Anna Lubiw

University of Waterloo

Thursday, 16 July, 15

Google Maps

Google Maps

Paths through Space

Paths through Space

social network 6 degrees of separation

Rubik's cube diameter = 20

6 Degrees of Separation (Small World)

David Johnston

Queen Elizabeth

UW prof

you

Motion Planning

Shortest Paths

linear programming simplex method

network routing

Shortest Path Algorithms

- in a graph
- in a geometric space

types of questions

- given start point, end point, find shortest path
- "single source": given start point, find shortest paths to all end points
 - "all pairs": find shortest path for all start points, all end points

```
Also "query" versions.
```

Shortest Paths in Graphs

Shortest Paths in Graphs

Finding Shortest Paths in Graphs

Can we store all the answers?

Distances in KM *	Bonff	Bella Coola	Calgary	Comptell River	Edmonton	Jasper	Kamloope	Kalawna	Nelson	Port Hardy	Prine e George	Prine e Rupert	Revelstoke	Talino	Vanceuver	Victoria	Whistler
Banff		1235	128	1004	423	285	492	474	496	1242	661	1385	282	1059	847	885	967
Bella Coola	1235		1363	238*	1360	999	743	903	1197	0	694	0	953	512	996	504	1116
Calgary	128	1363		1132	295	413	620	602	624	1370	789	1513	410	1187	975	1013	1095
Campbell River	1004	238	1132		1312	951	512	552	814	238	940	238	722	274	172	266	253
Edmonton	423	1360	295	1312		361	800	897	919	1471	737	1461	705	1367	1155	1193	1275
Jasper	285	999	413	951	361		439	602	701	1110	376	1100	455	1006	794	832	914
Kamloops	492	743	620	512	800	439		163	454	750	525	1249	210	567	355	393	475
Kelowna	474	903	602	552	897	602	163		338	790	685	1409	192	607	395	433	515
Nelson	496	1197	624	814	919	701	454	338		1052	979	1703	246	869	657	695	777
Port Hardy	1242	0	1370	238	1471	1110	750	790	1052		734	0	960	512	410	504	491
Prince George	661	694	789	940	737	376	525	695	979	734		724	735	995	778	821	898
Prince Rupert	1385	0	1513	238	1461	1100	1249	1409	1703	0	724		1469	512	1502	504	1622
Revelstoke	282	953	410	722	705	455	210	192	246	960	735	1469		777	565	603	685
Tafino	1059	512	1187	274	1367	1006	567	607	869	512	995	512	777		227	321	308
Vancouver	847	996	975	172	1155	794	355	395	657	410	778	1502	565	227		69	123
Victoria	885	504*	1013	266	1193	832	393	433	695	504	821	504	603	321	69		192
Whistler	967	1116	1095	253	1275	914	475	515	777	491	898	1622	685	308	123	192	

 $17 \times 17 = 289$

 $n \times n = n^2$

Quadratic Growth

How to Find Shortest Paths

Try all paths and see which is shortest?

How many shortest paths are there?

How to Find Shortest Paths

Try all paths and see which is shortest?

How many shortest paths are there?

graph with 2n+2 vertices

 2^n paths

Exponential Growth

n

exponential $O(2^n)$ polynomial $O(n^2)$

Shortest Paths – String Computer

single source shortest paths

The first challenge for computing science is to discover how to maintain order in a finite, but very large, discrete universe that is intricately intertwined.

Edsger W. Dijkstra

The question of whether Machines Can Think is about as relevant as the question of whether Submarines Can Swim.

Find the shortest path from Toronto to Philadelphia.

running time $O(m + n \log n)$ using Fibonacci heaps

(Fredmand and Tarjan, 1987)

m = number of edges n = number of vertices
Paths through Space

desire paths

Paths through Space

Paths through Space

Shortest Paths in 2D

Polygon

Polygonal Domain

Shortest Paths in 2D

Polygon

Polygonal Domain

O(n)

 $O(n \log n)$

Shortest Paths in a Polygon

Funnel Algorithm, *O*(*n*)

Idea:

- triangulate the polygon
- find path in triangulation
- narrow it down

Shortest Paths in a Polygon

Funnel Algorithm, *O*(*n*)

Idea:

- triangulate the polygon
- find path in triangulation
- narrow it down

Shortest Paths in the Plane with Obstacles

Shortest Paths in the Plane with Obstacles

two locally shortest ("geodesic") paths

Shortest Paths in the Plane with Obstacles Using Dijkstra's graph algorithm.

Make a graph out of visible corners.

Apply Dijkstra's graph algorithm.

Continuous Dijkstra

Thursday, 16 July, 15

Continuous Dijkstra

Thursday, 16 July, 15

Continuous Dijkstra $O(n \log n)$ Mitchell, Hershberger & Suri, '93

Moving Away from Flatland

Shortest Paths in 3D – Polyhedral Surfaces

Shortest Paths in 3D – Polyhedral Surfaces

why does this generalize 2D with obstacles?

Shortest Paths in 3D – Polyhedral Surfaces

why does this generalize 2D with obstacles?

The spider and the fly problem

Dudeney, The Canterbury Puzzles, 1958

The spider and the fly problem

locally shortest paths are straight lines in unfoldings The spider and the fly problem

Shortest Paths on Polyhedon

the spider and the fly problem

Shortest Paths on Polyhedon running times of algorithms

Shortest paths on a convex polyhedron $O(n \log n)$ Schreiber and Sharir `08

Shortest paths on a general polyhedron/polyhedral terrain $O(n^2)$ Chen and Han `96

Shortest Paths on Polyhedral Surfaces

Fast Exact and Approximate Geodesics on Meshes SIGRAPH 2005

Shortest Paths on Convex Polyhedron

Shortest paths from point x to all points on the surface.

An aside: Folding and Unfolding

Unfolding Polyhedra—Durer 1400's

Durer, 1498

Open Question

Can every convex polyhedron be unfolded into one piece without overlap by cutting edges?

good examples

Tetrahedron Octahedron Cube

Dodecahedron Icosahedron

bad example

but there is a better way to cut this polyhedron

Open Question

Can every convex polyhedron be unfolded into one piece without overlap by cutting edges?

Shortest Paths so far

polynomial time algorithms for shortest paths in

- graph
- polygon
- plane with polygonal obstacles
- polyhedron
Hard and Easy Problems

Clay Math Institute offers \$1M prize to solve $P \stackrel{?}{=} NP$

NP-complete

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

Harder Shortest Path Problems

Snell's law

$$\theta_1$$
 n_1 n_2 θ_2 η_2

 $n_1\sin\theta_1=n_2\sin\theta_2,$

- Willebrord Snellius, 1621
- René Descartes, 1637

لانداز مانتده عليهاسط مستوغيره فلاز هذا الشطح يعط سط بزص عانقطة ب فلابر من لريقط احد خلى بن بع فلكن ذلك الخط مبض والعصل المشترك بين هذا السطح وبين علم قط ق خط مشر فلات هذا السط يا ترضيط مبعل فعط ت غنط مشتط ت على قطة ت على نقطة ت وكذلك خط مبتح و فلا عالم فلا يا ترضيط مت على نقطة مت سطح مستوغير سلح مرت

Harder Shortest Path Problems

The Weighted Region Problem -- Mitchell and Papadimitriou '91 OPEN: is this problem in P? NP-complete?

Shortest Anisotropic Paths

OPEN: is this problem in P? NP-complete?

Approximation Algorithm (Steiner Point Approach)

for weighted region and some special cases of anisotropic

add many "Steiner" points and model as shortest path in a graph

Shortest Descending Paths on Terrains joint work with Mustaq Ahmed

Shortest Descending Paths on Terrains joint work with Mustaq Ahmed

Shortest Descending Paths on Terrains joint work with Mustaq Ahmed

OPEN: is this problem in P? NP-complete?

Thursday, 16 July, 15

Shortest Gently Descending Paths on Terrains joint work with Mustaq Ahmed

Find a shortest path that descends, but not too *steeply*.

steep = lies in this cone

OPEN: is this problem in P? NP-complete?

Approximation Algorithm (Steiner Point Approach)

add many "Steiner" points and model as shortest path in a graph

Hard and Easy Problems

Clay Math Institute offers \$1M prize to solve $P \stackrel{?}{=} NP$

Shortest Paths in 3D Space

Shortest Paths in 3D Space

This problem is NP-hard.

Canny & Reif, 1987

Approximation Algorithm (Steiner Point Approach)

Papadimitriou '85

Add many Steiner points and model as shortest path in a graph.

Thursday, 16 July, 15

New Results on Shortest Paths

center of a polygon

find a point to minimize the maximum distance to any point

O(n) time algorithm, June 2015

Research Topics

- practical shortest path methods for large graphs/maps
- shortest paths as graphs change ("dynamic" graphs)
- center and diameter

More Information

shortest paths course https://cs.uwaterloo.ca/~alubiw/CS860.html

Geometric Shortest Paths and Network Optimization, survey by Joseph Mitchell

book on folding

chapter on shortest paths:

I offer a free copy of "How to Fold It" to the first person who solves this folding puzzle (which has nothing to do with shortest paths)

Cut out this shape (with 9 unit squares) and fold it into a cube only folding on the dashed lines.

THE END