
Functional lexing and parsing

Prabhakar Ragde
Cheriton School of Computer Science

University of Waterloo

CSC UW Mar 2009 Functional Lexing and Parsing 1

Outline of talk

• Functional vs imperative programming

• Bunch notation

• Finite state machines and regular expressions

• Context-free grammars

• Recursive descent and LL parsing

• Recursive ascent and LR parsing

CSC UW Mar 2009 Functional Lexing and Parsing 2

Functional vs imperative programming
Functional programming:

• Based on the computation of new values by applying functions to

old values

• Closer to mathematics (more conceptual)

• Typically uses recursion, lists, trees

Imperative programming:

• Based on the accretion of small changes to values

• Closer to machines (more efficient)

• Typically uses loops, arrays, frequently-modified variables

CSC UW Mar 2009 Functional Lexing and Parsing 3

Lexing and parsing

• Major results worked out in ’60’s

• Computers were slow, memory and disk space very limited

• Dominant programming languages were low-level and imperative

• Things have changed (somewhat)

• But we still teach highly-optimized low-level algorithms!

• Now that we’re not scared of functions, recursion, lists, trees. . .

CSC UW Mar 2009 Functional Lexing and Parsing 4

Bunches
Bunches are a variant of sets.

Intention: to simplify notation used in algorithms.

• A singleton bunch is identified with its only element.

• Bunches are “flat”.

They contain “atomic” values (not other bunches).

• Functions distribute over bunches.

(The value of a function applied to a bunch is the bunch of the

function applied to each value in the bunch.)

CSC UW Mar 2009 Functional Lexing and Parsing 5

Bunch notation

• ∈ and⊆ subsumed in←
• For union: use | and ,

• Guards: P . x means if P then x else φ.

• Implied “there exists” in guards;

Instead of f(x, y) = {A(x, y) | ∃z P (x, y, z)}
we write P (x, y, z) . A(x, y).

CSC UW Mar 2009 Functional Lexing and Parsing 6

Lexing and parsing

(1 2 + 3 4 5)

(12 + 345)

(12 + 345)

raw

lexing

parsing

CSC UW Mar 2009 Functional Lexing and Parsing 7

Finite state machines (FSMs)

q1 q2

q3 q4

a

a

a

a
b bb b

CSC UW Mar 2009 Functional Lexing and Parsing 8

Formally, a finite state machine M is:

• A set of states Q;

• A set of final states F ;

• A start state s;

• An alphabet Σ;

• A transition function δ : Q× Σ→ Q.

The language L accepted by M is a subset of Σ∗ (strings over the

alphabet Σ).

CSC UW Mar 2009 Functional Lexing and Parsing 9

We define a function [q] : Σ∗ → Q for each state q in Q.

[q](σ) =

q σ = ε (empty string)

[δ(q,first(σ))](rest(σ)) otherwise

σ ← L ≡ [s](σ)← F

“Interpreted”: implement [] as a function of two arguments (q, σ)

“Compiled”: implement each [q] as a separate function

CSC UW Mar 2009 Functional Lexing and Parsing 10

;; ”interpreted”

(define (run q sigma)

(cond

[(empty? q) q]

[else (run (delta q (first sigma))

(rest sigma))]))

// "interpreted"
q = s;
c = getchar();
while (c != EOF) {

q = delta(q,c);
c = getchar();

}

CSC UW Mar 2009 Functional Lexing and Parsing 11

(define machine

(local [(define (q1 sigma)

(cond

[(empty? sigma) true] ;; final state

[else

(case (first sigma)

[(a) (q2 (rest stream))]

[(b) (q3 (rest stream))]

[else false])]))

(define (q2 sigma) . . .) . . .] ;; tedious repetition omitted

q1))

CSC UW Mar 2009 Functional Lexing and Parsing 12

Desired syntax:

(define machine

(automaton q1

(q1 true : (a -> q2)

(b -> q3))

(q2 false : (a -> q1)

(b -> q4))

(q3 false : (a -> q4)

(b -> q1))

(q4 true : (a -> q3)

(b -> q2))))

CSC UW Mar 2009 Functional Lexing and Parsing 13

Using a macro (no omissions):

(define-syntax automaton

(syntax-rules (: ->)

[(init-state (state : result (symbol -> next) . . .) . . .)

(local [(define (state sigma)

(cond

[(empty? sigma) result]

[else

(case (first sigma)

[(symbol) (next (rest sigma))] . . .

[else false])])) . . .]

init-state)]))

CSC UW Mar 2009 Functional Lexing and Parsing 14

Nondeterministic finite state machines
(NFSM)

q1 q2 q3 q5b

a

ba a

b

q4

Change: make δ a set-valued (or bunch-valued function).

Example: δ(q1, b) = q1, q2.

CSC UW Mar 2009 Functional Lexing and Parsing 15

In our definitions, we view q as a bunch (no changes needed).

We must look for a final state in the final bunch.

[q](σ) =

q σ = ε

[δ(q,first(σ))](rest(σ)) otherwise

σ ← L ≡ [s](σ) ∩ F is nonempty

“Interpreted”: Classical “simulation” of an NFA.

“Compiled”: the subset construction (NFA to DFA).

CSC UW Mar 2009 Functional Lexing and Parsing 16

Adding ε-transitions

q0

q1 q3

q4

a

q2

a

b

b
ε

ε

Change: add eps(q)← Q

Example: eps(q0) = q1, q2.

CSC UW Mar 2009 Functional Lexing and Parsing 17

To fix our definitions: define the reach function.

reach(q) = q | eps(reach(q))

[q](σ) =

q σ = ε

[δ(reach(q),first(σ))](rest(σ)) otherwise

σ ← L ≡ [s](σ) ∩ F is nonempty

But how do we compute reach(q)?

CSC UW Mar 2009 Functional Lexing and Parsing 18

Fixed-point computation
reach(q) is a solution of b = f(b) for:

f(b) = q | b | eps(b)

Here f is monotone: if x← y, then f(x)← f(y).

One solution is

b = f(φ) | f(f(φ)) | f(f(f(φ))) . . . =
∞⋃
i=0

f (i)(φ)

This is the smallest solution, and it is a finite computation if the size of b

is bounded. We say b is a fixed point of f .

CSC UW Mar 2009 Functional Lexing and Parsing 19

Regular expressions (REs)
Examples: (a+ b)∗baba, 1(0 + 1)∗.

A RE R is either φ or ε or t (t← Σ) or R1R2 or R1 +R2 or R∗1 .

L(R) = R = φ . φ | R = ε . ε | R = t . t

| R = R1R2 . L(R1)L(R2)

| R = R1 +R2 . (L(R1) | L(R2))

| R = R∗1 . L(R1)∗

where

L1L2 = x1 ← L1 ∧ x2 ← L2 . x1x2

L∗ = x← L ∧ y ← L∗ . xy (fixed-point)

CSC UW Mar 2009 Functional Lexing and Parsing 20

A RE has a recursive structure that is easily represented by a tree.

Various simplifications (εR = R, φ+R = R, ε∗ = ε) can be

implemented with “smart constructors”.

The traditional approach: convert an RE to an ε-NFA, then to an NFA,

then to a DFA (or simulate the NFA).

L(R)

ε
ε ε

ε

Problem: adding some operators (e.g. ¬) becomes difficult.

CSC UW Mar 2009 Functional Lexing and Parsing 21

A functional approach to REs
Goal: define the RE-valued [R](σ), with specification

γ ← L([R](σ)) if and only if σγ ← L(R).

First: define the RE-valued nbl(R) (meaning “R is nullable”).

nbl(R) ≡

ε ε← L(R)

φ otherwise

nbl(R) = R = φ . φ | R = ε . ε | R = t . φ

| R = R1R2 . nbl(R1)nbl(R2)

| R = R1 +R2 . nbl(R1) + nbl(R2)

| R = R∗1 . ε

CSC UW Mar 2009 Functional Lexing and Parsing 22

Next: define ∂t(R), the “derivative with respect to t of R”, with

specification tα← L(R) if and only if α← L(∂t(R)).

To compute ∂t(R):

∂t(R) = R = φ . φ | R = ε . φ | R = t . ε | R = t′ . φ

| R = R1R2 . ∂t(R1)R2 + nbl(R1)∂t(R2)

| R = R1 +R2 . ∂t(R1) + ∂t(R2)

| R = R∗1 . ∂t(R1)R1

Example: ∂b((a+ b)∗baba) = aba+ (a+ b)∗baba.

CSC UW Mar 2009 Functional Lexing and Parsing 23

Now it is easy to define [R](σ).

[R](σ) =

R σ = ε

[∂first(σ)(R)](rest(σ)) otherwise

σ ← L(R) ≡ nbl([R](σ)) = ε

“Interpreted”: structural recursion on R, tail recursion on σ.

“Compiled”: another DFA construction.

Adding new operators is much simpler.

CSC UW Mar 2009 Functional Lexing and Parsing 24

Context-free grammars
A grammar G consists of:

• A set of terminals T (here a, b, c . . .);

• A set of nonterminals N (here A,B,C . . . or 〈X〉);
(here, strings of the above are α, β, . . .)

• A set of rules R (e.g. A→ aBa);

• A starting nonterminal S.

CSC UW Mar 2009 Functional Lexing and Parsing 25

Example grammar: S → aSb, S → ε.

Rewriting: S → aSb→ aaSbb→ aaaSbbb→ aaabbb.

S
S
S

a
ε

a
a

b
b
bS

Recognition: can a given string be produced by the grammar?

Parsing: produce the parse tree[s] for a given string.

CSC UW Mar 2009 Functional Lexing and Parsing 26

Traditionally: a rewriting step is βAγ → βαγ where A→ α is a rule.

α
∗→ β ≡ (α = β) ∨ (α +→ β)

α
+→ β ≡ ∃γ(α→ γ ∧ γ ∗→ β)

LG = {α ∈ T ∗ | S ∗→ α}
Nontraditionally: define LG(•) on strings from (T |N)∗.

LG(t) = t

LG(ε) = ε

LG(αβ) = LG(α)LG(β)

For A← N , LG(A) = (A→ α)← R . LG(α)

These equations in the unknowns LG(A) can be solved by a (possibly

infinite) fixed-point computation, and LG = LG(S).

CSC UW Mar 2009 Functional Lexing and Parsing 27

Grammars and state machines
We can simulate an ε-NFSM using a grammar.

A state q corresponds to a nonterminal 〈q〉.
The start state s yields the rule S → 〈s〉.
A transition δ(q, c) = q′ yields the rule 〈q〉 → c〈q′〉.
An ε-transition q′ ← eps(q) yields the rule 〈q〉 → 〈q′〉.
A final state f yields the rule 〈f〉 → ε.

We will be using this idea later on.

CSC UW Mar 2009 Functional Lexing and Parsing 28

Recognition of context-free languages
We define functions [γ](•) for γ ← (T |N)∗ with the specification

[γ](σ) ≡ (σ = σ1σ2) ∧ σ1 ← LG(γ) . σ2.

[ε](σ) = σ

[t](σ) = (first(σ) = t) . rest(σ)

[Xβ](σ) = [β]([X](σ))

[A](σ) = (A→ α)← R . [α](σ)

This is a recursive descent parser.

σ ← L ≡ ε← [S](σ)

CSC UW Mar 2009 Functional Lexing and Parsing 29

Example: S → aSb, S → ε.

[S](aabb) = [aSb](aabb) | [ε](aabb)
= [Sb]([a](aabb)) | aabb
= [Sb](abb) | aabb
= ε, aabb because:

[Sb](abb) = [b]([S](abb))

= [b]([aSb](abb) | [ε](abb))
= [b]([Sb](bb) | abb)
= [b]([b]([S](bb)))

= [b]([b]([aSb](bb) | [ε](bb)))
= [b]([b](bb)) = ε

CSC UW Mar 2009 Functional Lexing and Parsing 30

Problem: left recursion
Example: S → Sa, S → ε.

[S](σ) = [a]([S](σ)) | [ε](σ)

Solution: Rewrite the grammar to eliminate left recursion.

Problem: it’s less natural.

Problem: parse trees have the “wrong shape”.

Left recursion arises naturally from left-associative operators.

Example: a+ b+ c+ d means ((a+ b) + c) + d.

We will come back to this problem.

For the time being, we avoid left recursion.

CSC UW Mar 2009 Functional Lexing and Parsing 31

Problem: running time
Recursive descent is slow for some grammars without left recursion.

Example: S → aSS, S → ε.

Recursive descent on a string of n a’s takes exponential time.

Solution: memoization.

Create a table of previously computed function values.

There areO(1) function “names” (nonterminals, suffixes of rule RHSs).

There are O(n) arguments (suffixes of input).

A table entry (bunch) could be of size O(n), and computing it could

take O(n2) time.

Time complexity O(n3), space complexity O(n2).

CSC UW Mar 2009 Functional Lexing and Parsing 32

Problem: still too much time/space used
Idea: use the next character in the input to eliminate unnecessary

recursion (perhaps to the point of eliminating bunches).

[A](σ) = (A→ α)← R . [α](σ)

If nothing in LG(α) starts with first(σ), don’t call [α].

Complication: what if σ ← [α](σ) (i.e., ε← LG(α))?

Then we must check if first(σ) can follow A in some rewriting of S.

CSC UW Mar 2009 Functional Lexing and Parsing 33

As a utility predicate, we define the Boolean-valued

nbl(α) ≡ ε← LG(α) for α a suffix of a rule RHS.

nbl(ε) = true

nbl(t) = false

nbl(Xβ) = nbl(X) ∧ nbl(β)

nbl(A) = (A→ ε)← R . true | (A→ α)← R . nbl(α)

This is a finite fixed-point computation.

CSC UW Mar 2009 Functional Lexing and Parsing 34

For use in the “first” condition, we define first(α) ≡ tβ ← LG(α) . t
for α a suffix of a rule RHS.

first(ε) = φ

first(t) = t

first(Xβ) = first(X) | nbl(X) . first(β)

first(X) = (X → tα)← R . t

| (X → Y α)← R . first(Y)

This is a finite fixed-point computation.

CSC UW Mar 2009 Functional Lexing and Parsing 35

For use in the “follow” condition, we define follow(X) for X ← N .

Specification:

follow(X) ≡ αXβ ← LG(S) ∧ first(β)← T . first(β).

follow(X) = (A→ αXβ)← R ∧ first(β)← T . first(β)

| (A→ αXβ)← R ∧ nbl(β) . follow(A)

This is a finite fixed-point computation.

We are finally ready to modify our recursive descent parser.

CSC UW Mar 2009 Functional Lexing and Parsing 36

[ε](σ) = σ

[t](σ) = (first(σ) = t) . rest(σ)

[Xβ](σ) = [β]([X](σ))

[A](σ) = (A→ α)← R ∧
((first(α) = first(σ)) ∨ (nbl(α) ∧ first(σ)← follow(A)))

. [α](σ)

A grammar is LL(1) iff this is “deterministic” (there is at most one rule

making the guard true).

For LL(k), we define firstk and followk (k symbols of lookahead).

CSC UW Mar 2009 Functional Lexing and Parsing 37

To obtain the conventional algorithm: make the recursion stack explicit.

push S
while (stack nonempty) {

if (top is terminal t) {
if (input symbol is t) {

pop t, consume t
} else {

pop A
push RHS of rule rewriting A

}
}
accept iff input empty

CSC UW Mar 2009 Functional Lexing and Parsing 38

Before we move towards LR parsing. . .
Some alternatives:

ANTLR and LL(*) parsing

Parsing expression grammars and packrat parsing

Parser combinators

CSC UW Mar 2009 Functional Lexing and Parsing 39

A grammar transformation
Aim: to ensure at most two nonterminals on RHS of any rule.

Idea: create new nonterminals which are items of the form

〈A→ α •β〉, where (A→ αβ)← R.

Given a grammar G, create EG with the following rules:

A→ 〈A→ •α〉 for (A→ α)← R

〈A→ α •Xβ〉 → X〈A→ αX •β〉 for (A→ αXβ)← R

〈A→ α • 〉 → ε for (A→ α)← R

G and EG define the same language.

CSC UW Mar 2009 Functional Lexing and Parsing 40

Apply recursive descent to EG.

[t](σ) = (first(σ) = t) . rest(σ)

[A](σ) = (A→ α)← R . [A→ •α](σ)

[A→ α •Xβ](σ) = [A→ αX •β]([X](σ))

[A→ α •](σ) = σ

Inline [t] and [A], so all remaining functions have “item names”.

[A→ α • tβ](σ) = (first(σ) = t) . [A→ α • tβ](rest(σ))

[A→ α •Bβ](σ) = (B → γ)← R . [A→ αB •β]([B → •γ](σ))

[A→ α •](σ) = σ

CSC UW Mar 2009 Functional Lexing and Parsing 41

If we add the rule S′ → S to the grammar, then

σ ← LG(S) ≡ ε← [S′ → •S](σ).

This is just a variation on recursive descent.

Memoized, it is still an O(n3) algorithm.

And it still has problems with left recursion.

A better grammar transformation can deal with left recursion.

CSC UW Mar 2009 Functional Lexing and Parsing 42

We say A is a left corner of α if by rewriting the leftmost symbol

repeatedly, we get from α to Aβ.

We’ll abbreviate this as lc(A,α).

lc(A,α) = (A = first(α))∨ ((first(α)→ γ)← R∧ lc(A, γ))

This is another finite fixed-point computation.

We add nonterminals of the form 〈X,A→ α •β〉, meaning,

intuitively, that we’ve seen α, we hope to see β, and lc(X,β).

We use this idea to create a grammar FG equivalent to G, with rules of

the five types listed on the next slide.

CSC UW Mar 2009 Functional Lexing and Parsing 43

Type 1: S → 〈S → •α〉 for (S → α)← R

Type 2: 〈X,A→ α •Xβ〉 → 〈A→ αX •β〉 for

(A→ αXβ)← R

Type 3: 〈A→ α •β〉 → t〈t, A→ α •β〉 for

(A→ αβ)← R ∧ lc(t, β).

Type 4: 〈X,A→ α •β〉 → 〈B → X •δ〉〈B,A→ α •β〉 for

(B → Xδ), (A→ αβ)← R ∧ lc(B, β).

Type 5: 〈A→ α • 〉 → ε for (A→ α)← R

Claim: this is not left-recursive if G is not cyclic (we cannot rewrite A

and get A) and has no ε-rules (that can be fixed with a sixth type of

rule).

CSC UW Mar 2009 Functional Lexing and Parsing 44

Example: S → Sx, S → y.

Type 1: S → 〈S → •Sx〉, S → 〈S → •y〉.
Type 2: 〈S, S → •Sx〉 → 〈S → S •x〉,
〈x, S → S •x〉 → 〈S → Sx • 〉, 〈y, S → •y〉 → 〈S → y • 〉.

Type 3: 〈S → S •x〉 → x〈x, S → S •x〉,
〈S → •y〉 → y〈y, S → y • 〉.

Type 4: 〈S → •Sx〉 → 〈S → S •x〉〈S, S → S •x〉,
〈S → •y〉 → 〈S → •y〉〈S, S → S •x〉.

Type 5: 〈S → Sx • 〉 → ε, 〈S → y • 〉 → ε.

CSC UW Mar 2009 Functional Lexing and Parsing 45

S
xS

S x
y

S

〈S → ·Sx〉

〈S → ·y〉
y 〈y, S → ·y〉

〈S, S → S · x〉〈S → ·y〉
〈S, S → S · x〉

〈S, S → S · x〉
x

〈S → Sx·〉

〈x, S → S · x〉
〈S → S · x〉

〈S → S · x〉ε

ε

ε

x 〈x, S → S · x〉
〈S → S · x〉

〈S → S · x〉
ε

CSC UW Mar 2009 Functional Lexing and Parsing 46

We apply recursive descent to FG.

We’ll have functions of the form [A→ α.β](σ) which, intuitively,

removes from σ something obtainable by rewriting β.

We will represent the [X,A→ α •β](σ) functions as

[A→ α •β](X,σ).

The resulting parser is shown on the next slide.

CSC UW Mar 2009 Functional Lexing and Parsing 47

[A→ α •β](σ) = lc(first(σ), β) . [A→ α •β](first(σ)), rest(σ))

| lc(B, β) . [A→ α •β](B, σ)

| β = ε . σ

[A→ α •β](X,σ) = (β = Xγ) . [A→ αX •γ](σ)

| lc(B, β) ∧ (B → Xδ)← R

. [A→ α •β](B, [B → X •δ](σ))

This is a recursive ascent parser.

CSC UW Mar 2009 Functional Lexing and Parsing 48

Memoized, the recursive ascent parser still has O(n3) time complexity

and O(n2) space complexity when parsing strings of length n.

It can handle left-recursive grammars, and it can be augmented to

produce a compact representation of all possible parse trees of the

parsed string.

We need to add one more idea in order to design LR parsers with

O(n) time and space complexity (for a restricted set of grammars).

CSC UW Mar 2009 Functional Lexing and Parsing 49

Recall our simulation of a finite-state machine by a grammar.

Let’s examine some of the rules in FG.

Type 3: 〈A→ α •β〉 → t〈t, A→ α •β〉 for

(A→ αβ)← R ∧ lc(t, β).

This looks like a simulated state transition on t.

Type 2: 〈X,A→ α •Xβ〉 → 〈A→ αX •β〉 for

(A→ αXβ)← R

This could be viewed as a state transition on X .

Type 4: 〈X,A→ α •β〉 → 〈B → X •δ〉〈B,A→ α •β〉 for

(B → Xδ), (A→ αβ)← R ∧ lc(B, β).

This is like an ε-transition from working on X to working on B.

CSC UW Mar 2009 Functional Lexing and Parsing 50

The analogy is not perfect, but if:

• a rule is like a transition, and

• not knowing what rule to apply is like not knowing what transition to

make,

then we can use a variant on our definition of the meaning of a

nondeterministic finite state machine (NFSM).

We will write functions [q] where q is no longer just an item, but a

bunch of items.

Just as our NFSM functions could be thought of as “trying all transitions

in parallel”, so our parsing functions will try all possible “transitions”

defined by FG “in parallel”.

A bunch of items is called a state in the classic presentation.

CSC UW Mar 2009 Functional Lexing and Parsing 51

LR parsing
For each state q, we’ll define [q](σ) with specification

(A→ α •β)← q∧σ = σ1σ2 ∧σ1 ← LG(β) . (A→ α •β, σ2).

Here’s how we recognize strings generated by our grammar:

σ ← LG(S) ≡ (S′ → S, ε)← [S′ → •S](σ)

Our “ε-transitions” will be:

eps(q) = (A→ α •Bβ)← q ∧ (B → ν)← R

. B → •ν

As before, reach(q) = q | eps(reach(q′)).

(This is called predict in the classical presentation, and has a

description in terms of left corners.)

CSC UW Mar 2009 Functional Lexing and Parsing 52

We then get the transition function:

goto(q,X) = (A→ α •Xβ)← reach(q) . A→ αX •β

This defines the LR(0) automaton of the grammar.

We now apply the recursive ascent idea.

We define auxiliary functions [q] with specification:

[q](X,σ) = (A→ α •β)← R ∧ lc(X,β)∧
σ = σ1σ2 ∧ σ1 ← LG(rest(β))

. [A→ α.β](σ2)

Working out the details, we get the LR(0) parser on the next slide.

CSC UW Mar 2009 Functional Lexing and Parsing 53

[q](σ) = [q](first(σ), rest(σ))

| (B → •)← reach(q) . [q](B, σ)

| (A→ α •)← q . (A→ α • , σ)

[q](X,σ) = (A→ α •Xγ)← q ∧
(A→ αX •γ, σ′)← [goto(q,X)](σ)

. (A← αX •γ, σ′)

| C → •Xδ ← reach(q)∧
(C → X •δ, σ′)← [goto(q,X)](σ)

. [q](C, σ′)

If [q] is deterministic (single-valued) for all q, the grammar is LR(0).

CSC UW Mar 2009 Functional Lexing and Parsing 54

Possible sources of nondeterminism:

• if a state q has more than one item of the form A→ α •

(this is a reduce-reduce conflict)

• if a state q has an item A→ α • but also goto(q, t) is nonempty,

which will be a problem if t = first(σ)
(this is a shift-reduce conflict)

For LR(k), add lookahead k as with LL(k).

This only vaguely resembles the classical description of an LR parser.

CSC UW Mar 2009 Functional Lexing and Parsing 55

To get the classical presentation:

• make the recursion stack explicit (the “state stack”), allowing the

use of a while loop

• view the input argument as a stack (the “symbol stack”) augmented

by items in the case of [q] and the extra argument in the case of

[q], allowing input to be read a character at a time

• implement various optimizations (e.g. items never need to be

pushed onto the symbol stack)

CSC UW Mar 2009 Functional Lexing and Parsing 56

In summary

• LR parsing is hard to understand

• It gets harder when you start from the wrong end

• There are easier lexers and parsers for learning and experiment

• A functional approach facilitates understanding

of both lexing and parsing

CSC UW Mar 2009 Functional Lexing and Parsing 57

References
Lex Augusteijn, John Brzozowski, E.C.H. Hehner, Shriram

Krishnamurthi, Frank Kruseman Aretz, René Leermakers, Peter Norvig,

Scott Owens, John Reppy, Michael Sperber, Peter Thiemann, Aaron

Turon.

CSC UW Mar 2009 Functional Lexing and Parsing 58

