Rapid prototyping and mathematical art Craig S. Kaplan Computer Science Club talk - 2 April 2009

A quick tour of technologies, techniques, and applications for computer-aided manufacturing in 2D and 3D.

2D Technology

* Tool moves in 2D relative to material* Can apply varying pressure or intensity

Knife cutter aka Digital Craft Cutter

- Material feeds in and out of device
- * Cutting head moves left and right
- Knife moves up and down with varying pressure

Laser cutter

* Laser lens moves freely in two axes* Can vary speed and laser intensity

* The top of the line for 2D cutting

Islamic star patterns

Tex Turmap Graphics Guru and Professor

Teapot University Department of Computer Science

tturmap@cs.teapot.edu http://www.cs.teapot.edu/~tturmap/

Tex Turmap

Graphics Guru and Professor

Teapot University Department of Computer Science

tturmap@cs.teapot.edu http://www.cs.teapot.edu/~tturmap/

Objetos Marchitos (2008) Dan Funderburgh

Uppercase scarf Little Factory

Shad Valley, 2007

Modular Kirigami (George Hart, Bridges 2007)

Deep Sea Tango

2D: Do it yourself

* Build one

- * hacklab.to
- * Use somebody else's
 * CSC, Architecture studio
 * Pay someone to do it
 - * lazerit.ca
- * Use an online service
 - * ponoko.com

2D: Do it yourself

- * Build one
 - * hacklab.to
- * Use somebody else's
 * CSC, Architecture shop
 * Pay someone to do it
 * lazerit.ca
 * Use an online service
 * ponoko.com

2D: Do it yourself

* Build one

- * hacklab.to
- * Use somebody else's
 * CSC, Architecture shop
 * Pay someone to do it
 * lazerit.ca
 * Use an online service
 * ponoko.com

Intermezzo: CNC machining

- * Tool head drives high-speed bit
- * Tool can move up and down (3-axis) and tilt (5-axis)
- * Very wide range of scales

Sushi plate, Georg Petchnigg (2002)

3D Technology

- * Moving tool head ejects material or glues it together
- * Parts built up layer by layer

Selective laser sintering

- Work bed contains stainless
 steel powder coated with binder
- * Laser activates binder
- Work bed descends after each layer
- Baking, filling voids, finishing

Other powders

Z-Corp: cornstarch and glue

CandyFab: sugar and hot air

Fused Deposition Modelling

- Nozzle extrudes molten ABS plastic filament layer by layer
- Not freestanding: need secondary support material

FDM Support material

Umbilic Torus NC, Helaman Ferguson

Gonads of the Rich and Famous, George Hart (~2000)

Mermaid's Delight, George Hart (2006)

Echinodermania, George Hart (2007)

Quintrino & Quintron, Bathsheba Grossman

Metatron, Bathsheba Grossman

120-Cell, Bathsheba Grossman

Origami I and Rhombic Triacontahedron IV, Vladimir Bulatov

6 Cubes, Rinus Roelofs

7 Linked Cubes, Rinus Roelofs

Ergun Akleman

60 Butterflies, Carlo Séquin (2001)

Chinese Button Knot, Carlo Séquin (2007)

Whirled White Web, Carlo Séquin (2003)

2003 Breckenridge snow sculpting competition

3D: Do it yourself

* Build one

- * reprap.org
- # Use somebody else's
 - * Architecture shop
- * Pay someone to do it
- * ...* Use an online service
 - * shapeways.com

3D: Do it yourself

* Build one

- * reprap.org
- # Use somebody else's
 - * Architecture shop
- * Pay someone to do it
- * ...
 * Use an online service
 * shapeways.com

Conclusion

- These tools represent a potential revolution in art and design
 - * Artists gain more power and flexibility
 - * Art is the design of a process, not an artifact
 - * Non-artists can express themselves

Thank you!