
1

Second-Generation Stack Computer
Architecture

And Self-Extensible Language

© Charles Eric LaForest,
2006

2

Introduction

● Discovered field by chance in 2000 (blame the
Internet)

● Hobby project (simulations and assembly) until
2004

● Transformed into Independent Study thesis project
● Overview of current state of research
● Focus on programmer's view

3

Part 1: History And
Arguments

4

Stack Computers: Origins

● First conceived in 1957 by Charles Hamblin at the
University of New South Wales, Sydney.

● Derived from Jan Lukasiewicz's Polish Notation.
● Implemented as the GEORGE (General Order

Generator) autocode system for the DEUCE
computer.

● First hardware implementation of LIFO stack in
1963: English Electric Company's KDF9 computer.

5

Stack Computers: Origins (Part 2)

● Independently discovered in 1958 by Robert S.
Barton (US).

● Implemented in the Burroughs B5000 (also in
1963).

● Better known
● Spawned a whole family of stack computers
● The First Generation

6

The First Generation: Features

● Multiple independent stacks in main memory

● Stacks are randomly accessible data structures

● Contained procedure activation records

● Evaluated expressions in Reverse Polish Notation

● Complex instructions sets trying to directly
implement high-level languages (e.g.: PL/1,
FORTRAN, ALGOL)

● Few hardware buffers (four or less typically)

● Supplanted in the 1980's by RISC and better
compilers

7

Stack Computers: A New Hope
● Enter Charles H. (“Chuck”) Moore:

– Creator of the stack-based FORTH language, circa 1970

– Left Forth, Inc. in 1981 to pursue hardware
implementations

● NOVIX (1986), Sh-BOOM (1991), MuP21 (1994), F21 (1998), X18 (2001)

– Currently CTO of Intelasys, still working on hardware
● product launch expected April 3, 2006 at Microprocessor

Summit

● Enter Prof. Philip Koopman, Carnegie-Mellon
University
– Documented salient stack designs in “Stack Computers:

The New Wave”, 1989

– The Second Generation

8

The Second Generation: Features

● Two or more stacks separate from main memory

● Stacks are not addressable data structures

● Expression evaluation and return addresses kept
separate

● Simple instruction sets tailored for stack operations

● Still around, but low-profile (RTX-2010 in NASA
probes)

● Strangely, missed by virtually all mainstream
literature
– Exception: Feldman & Retter's “Computer Architecture”,

1993

9

Arguments and Defense

● Taken from Hennessy & Patterson's “Computer
Architecture: A Quantitative Approach”, 2nd edition

● Summary: Valid for First Generation, but not
Second

10

Argument: Variables

More importantly, registers can
be used to hold variables.
When variables are allocated
to registers, the memory traffic
reduces, the program speeds
up (since registers are faster
than memory), and the code
density improves (since a
register can be named with
fewer bits than a memory
location).
 [H&P, 2nd ed, pg 71]

● Manipulating the stack
creates no memory traffic

● Stacks can be faster than
registers since no
addressing is required

● Lack of register addressing
improves code density even
more (no operands)

● Globals and constants are
kept in main memory, or
cached on stack for short
sequences of related
computations

● Ultimately no different than
a register machine

11

Argument: Expression
Evaluation

Second, registers are easier for
a compiler to use and can be
used more effectively than
other forms of internal storage.
For example, on a register
machine the expression (A*B)-
(C*D)-(E*F) may be evaluated
by doing the multiplications in
any order, which may be more
efficient due to the location of
the operands or because of
pipelining concerns (see
Chapter 3). But on a stack
machine the expression must
be evaluated left to right,
unless special operations or
swaps of stack position are
done.
 [H&P, 2nd ed, pg. 71]

● Less pipelining is required to
keep a stack machine busy

● Location of operands is
always the stack: no WAR,
WAW dependencies

● However: always a RAW
dependency between
instructions

● Infix can be easily compiled
to postfix
– Dijkstra's “shunting yard”

algorithm
● Stack swap operations

equivalent to register-
register move operations

● Stack are inverse registers!

12

Argument: Stacks Are Bad,
Mmmm'kay?

1. Performance is derived
from fast registers, not the
way they are used.

2. The stack organization is
too limiting and requires
many swap and copy
operations.

3. The stack has a bottom,
and when placed in slower
memory there is a
performance loss.

[H&P, 2nd ed, pg. 113]

(citing older sources)

1. Then it shouldn't matter
that they're in a stack, and
it's faster anyway.

2. Figure out sequence of
operations at design or
compile time. Swaps and
copy operations can replace
moves, loads and stores in
some cases.

3. Strawman argument: all
stacks have a bottom, and
stacks 16-deep or more
rarely require spilling to
memory (< 1% of
instructions).

13

Part 2: The
Hardware

14

Example: Harris RTX-2000

● 2.0u standard cell
● ~10MHz
● 16x16 multiplier
● 3 counters/timers
● ISR latency: 400ns!
● unencoded

opcodes
● later Rad-Hard

15

The Hardware: Assumptions

● All registers/elements are word-wide (let's say 32
bits)

● Word addressing only (no bytes!)
● Flat memory model (no pages or segments)
● Signed integer arithmetic only (no overflow, no

carry)
● No interrupts, no exceptions, memory-mapped I/O
● Zero-operand instruction set

– Six 5-bit instructions per memory word (not VLIW!)

– or one 32-bit integer

16

The Hardware: Major Blocks

● Data Stack (DS)
● Return Stack (RS)
● Address Register (A)
● ALU
● Instruction Shift Register (ISR)
● Program Counter (PC)

17

DS

A

A
LU

PC

RS

MEM

ISR

18

Instruction Set

● Data Stack
– LIT, XOR, AND, NOT, 2*, 2/, +, +*, DUP, DROP, OVER

● Return Stack
– CALL, RET, JMP, JMP0, JMP+, R@+, R!+, >R, R>

● Address Register
– >A, A>, A@, A!, A@+, A!+

● Other
– NOP, UNDEF (4 left), PC@ (free!)

19

So What's It Good For?
● Fast procedure calls

– fast interrupts

● Compact code
● Reduced system complexity

– Shorter pipeline

– Simpler compilation

● Consistent instantaneous performance
– Hard Real-Time

● For small systems: more !/$

20

The Future

● Pairs ● Sea-of-Processors

A BMEM

Asynchronou
s!

21

Part 3: The
Software

The Software: Time

• C: Edit-Compile-Execute
• Lisp: Read-Eval-Print (REPL)

• Compile Time
• Run Time

23

The Software: Kernel

● Structures:
– Name & Code Dictionaries, Input Buffer, Counted

Strings

● Variables:
– HERE, HERE_NEXT, THERE, INPUT, SLOT, NAME_END

● Procedures:
– (CALL), (RET), (JMP), (JMP0), (JMP+), (LIT)
– (DROP), (+), (A@+), etc...
– NUMI, SCAN, DEFN, LOOK, EXECUTE, NXEC

● How big? ~800 32-bit words (or less!)

24

The Software: Raw Stuff
● SCAN : DEFN

SCAN SCAN LOOK POP_STRING (CALL)

SCAN DEFN LOOK POP_STRING (CALL) (RET)

– call SCAN call DEFN RET
● : l

SCAN SCAN LOOK POP_STRING (CALL)

SCAN LOOK LOOK POP_STRING (CALL)

SCAN POP_STRING LOOK POP_STRING (CALL) (RET)

– call SCAN call LOOK call POP_STRING RET

25

The Software: Medium-Rare
● : $c l LOOK (CALL) l POP_STRING (CALL) l (CALL) (CALL) (RET)

– call LOOK call POP_STRING call (CALL) RET

● : c SCAN SCAN $c SCAN $c $c RET

– call SCAN call $c RET

● : n c SCAN c NUMI (RET)

– call SCAN call NUMI RET

26

Macros: if...else

● : abs (DUP) if- c negate ; else ;

● : if- n# 0 c (JMP+) l# HERE_NEXT (@) (N-)
1 ;

● : else (>R) c NEW_WORD (R>) (!) ;

● DUP JMP+ call negate RET RET

27

Macros: Higher-Order Functions

Source
: mapgen

c (DUP) c (>R)

l# STRING_TAIL c (CALL) c
(R>)

n 1 # c # c (+)

c NEW_WORD

c (DUP) c l c (CALL) (>R) c #
(R>) c (+)

c (OVER) c (OVER) c (XOR)

c if (>R) c (JMP) (R>)

c else c (DROP) c (DROP) c ; ;

Object
(DUP) (>R)

[LIT STRING_TAIL] (CALL) (R>)

[LIT 1] (LIT) (+)

NEW_WORD

(DUP) l (CALL) >R (LIT) R> (+)

(OVER) (OVER) (XOR)

if >R (JMP) R>

else (DROP) (DROP) (RET) RET

28

Macros: Higher-Order Functions
(2)

Object
(DUP) (>R)

[LIT STRING_TAIL] (CALL) (R>)

[LIT 1] (LIT) (+)

NEW_WORD

(DUP) l (CALL) >R (LIT) R> (+)

(OVER) (OVER) (XOR)

if >R (JMP) R>

else (DROP) (DROP) (RET) RET

● : cipher n 2 mapgen
encoder

● Compiles:

DUP >R

call STRING_TAIL R>

[LIT 1] +

DUP call encoder [LIT 2] +

OVER OVER XOR

JMP0 JMP

DROP DROP RET
● SCAN BlahBlahBlahBlahBlah

 l INPUT @ cipher

29

The Software: In Progress

● Source code:
– Extensions: 6671 bytes
– Simple virtual machine: 3903 bytes
– Metacompiler: 6641 bytes
– Simple RPC: 1507 bytes

● Total binary size, incl. Kernel: < 6000
kwords (32-bit)

30

Thank You!

Questions?

