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Introduction

● Discovered field by chance in 2000 (blame the 
Internet)

● Hobby project (simulations and assembly) until 
2004

● Transformed into Independent Study thesis project
● Overview of current state of research
● Focus on programmer's view
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Part 1: History And 
Arguments
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Stack Computers: Origins

● First conceived in 1957 by Charles Hamblin at the 
University of New South Wales, Sydney.

● Derived from Jan Lukasiewicz's Polish Notation.
● Implemented as the GEORGE (General Order 

Generator) autocode system for the DEUCE 
computer.

● First hardware implementation of LIFO stack in 
1963: English Electric Company's KDF9 computer. 
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Stack Computers: Origins (Part 2)

● Independently discovered in 1958 by Robert S. 
Barton (US).

● Implemented in the Burroughs B5000 (also in 
1963).

● Better known
● Spawned a whole family of stack computers
● The First Generation



6

The First Generation: Features

● Multiple independent stacks in main memory

● Stacks are randomly accessible data structures

● Contained procedure activation records

● Evaluated expressions in Reverse Polish Notation

● Complex instructions sets trying to directly 
implement  high-level languages (e.g.: PL/1, 
FORTRAN, ALGOL)

● Few hardware buffers (four or less typically)

● Supplanted in the 1980's by RISC and better 
compilers
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Stack Computers: A New Hope
● Enter Charles H. (“Chuck”) Moore:

– Creator of the stack-based FORTH language, circa 1970

– Left Forth, Inc. in 1981 to pursue hardware 
implementations

● NOVIX (1986), Sh-BOOM (1991), MuP21 (1994), F21 (1998), X18 (2001)

– Currently CTO of Intelasys, still working on hardware 
● product launch expected April 3, 2006 at Microprocessor 

Summit

● Enter Prof. Philip Koopman, Carnegie-Mellon 
University
– Documented salient stack designs in “Stack Computers: 

The New Wave”, 1989

– The Second Generation
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The Second Generation: Features

● Two or more stacks separate from main memory

● Stacks are not addressable data structures

● Expression evaluation and return addresses kept 
separate

● Simple instruction sets tailored for stack operations

● Still around, but low-profile (RTX-2010 in NASA 
probes)

● Strangely, missed by virtually all mainstream 
literature
– Exception: Feldman & Retter's “Computer Architecture”, 

1993
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Arguments and Defense

● Taken from Hennessy & Patterson's “Computer 
Architecture: A Quantitative Approach”, 2nd edition

● Summary: Valid for First Generation, but not 
Second
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Argument: Variables

More importantly, registers can 
be used to hold variables. 
When variables are allocated 
to registers, the memory traffic 
reduces, the program speeds 
up (since registers are faster 
than memory), and the code 
density improves (since a 
register can be named with 
fewer bits than a memory 
location).
 [H&P, 2nd ed, pg 71]

● Manipulating the stack 
creates no memory traffic

● Stacks can be faster than 
registers since no 
addressing is required

● Lack of register addressing 
improves code density even 
more (no operands)

● Globals and constants are 
kept in main memory, or 
cached on stack for short 
sequences of related 
computations

● Ultimately no different than 
a register machine
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Argument: Expression 
Evaluation

Second, registers are easier for 
a compiler to use and can be 
used more effectively than 
other forms of  internal storage. 
For example, on a register 
machine the expression (A*B)-
(C*D)-(E*F) may be evaluated 
by doing the multiplications in 
any order, which may be more 
efficient due to the location of 
the operands or because of 
pipelining concerns (see 
Chapter 3). But on a stack 
machine the expression must 
be evaluated left to right, 
unless special operations or 
swaps of stack position are 
done.
 [H&P, 2nd ed, pg. 71]

● Less pipelining is required to 
keep a stack machine busy

● Location of operands is 
always the stack: no WAR, 
WAW dependencies

● However: always a RAW 
dependency between 
instructions

● Infix can be easily compiled 
to postfix
– Dijkstra's “shunting yard” 

algorithm
● Stack swap operations 

equivalent to register-
register move operations

● Stack are inverse registers!
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Argument: Stacks Are Bad, 
Mmmm'kay?

1. Performance is derived 
from fast registers, not the 
way they are used.

2. The stack organization is 
too limiting and requires 
many swap and copy 
operations.

3. The stack has a bottom, 
and when placed in slower 
memory there is a 
performance loss.

[H&P, 2nd ed, pg. 113]

(citing older sources)

1. Then it shouldn't matter 
that they're in a stack, and 
it's faster anyway.

2. Figure out sequence of 
operations at design or 
compile time. Swaps and 
copy operations can replace 
moves, loads and stores in 
some cases.

3. Strawman argument: all 
stacks have a bottom, and 
stacks 16-deep or more 
rarely require spilling to 
memory (< 1% of 
instructions).
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Part 2: The 
Hardware
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Example: Harris RTX-2000

● 2.0u standard cell
● ~10MHz
● 16x16 multiplier
● 3 counters/timers
● ISR latency: 400ns!
● unencoded 

opcodes
● later Rad-Hard
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The Hardware: Assumptions

● All registers/elements are word-wide (let's say 32 
bits)

● Word addressing only (no bytes!)
● Flat memory model (no pages or segments)
● Signed integer arithmetic only (no overflow, no 

carry)
● No interrupts, no exceptions, memory-mapped I/O
● Zero-operand instruction set

– Six 5-bit instructions per memory word (not VLIW!)

– or one 32-bit integer
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The Hardware: Major Blocks

● Data Stack (DS)
● Return Stack (RS)
● Address Register (A)
● ALU
● Instruction Shift Register (ISR)
● Program Counter (PC)
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Instruction Set

● Data Stack
– LIT, XOR, AND, NOT, 2*, 2/, +, +*, DUP, DROP, OVER

● Return Stack
– CALL, RET, JMP, JMP0, JMP+, R@+, R!+, >R, R>

● Address Register
– >A, A>, A@, A!, A@+, A!+

● Other
– NOP, UNDEF (4 left), PC@ (free!)
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So What's It Good For?
● Fast procedure calls

– fast interrupts

● Compact code
● Reduced system complexity

– Shorter pipeline

– Simpler compilation

● Consistent instantaneous performance
– Hard Real-Time

● For small systems: more !/$
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The Future

● Pairs ● Sea-of-Processors

A BMEM

Asynchronou
s!
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Part 3: The 
Software



   

The Software: Time

• C: Edit-Compile-Execute
• Lisp: Read-Eval-Print (REPL)

• Compile Time
• Run Time
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The Software: Kernel

● Structures:
– Name & Code Dictionaries, Input Buffer, Counted 

Strings

● Variables:
– HERE, HERE_NEXT, THERE, INPUT, SLOT, NAME_END

● Procedures:
– (CALL), (RET), (JMP), (JMP0), (JMP+), (LIT)
– (DROP), (+), (A@+), etc...
– NUMI, SCAN, DEFN, LOOK, EXECUTE, NXEC

● How big? ~800 32-bit words (or less!)
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The Software: Raw Stuff
● SCAN : DEFN 

SCAN SCAN LOOK POP_STRING (CALL) 

SCAN DEFN LOOK POP_STRING (CALL) (RET)

– call SCAN call DEFN RET
● : l 

SCAN SCAN LOOK POP_STRING (CALL) 

SCAN LOOK LOOK POP_STRING (CALL) 

SCAN POP_STRING LOOK POP_STRING (CALL) (RET)

– call SCAN call LOOK call POP_STRING RET
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The Software: Medium-Rare
● : $c l LOOK (CALL) l POP_STRING (CALL) l (CALL) (CALL) (RET)

– call LOOK call POP_STRING call (CALL) RET

● : c SCAN SCAN $c SCAN $c $c RET

– call SCAN call $c RET 

● : n c SCAN c NUMI (RET)

– call SCAN call NUMI RET



26

Macros: if...else

● : abs (DUP) if- c negate ; else ;

● : if- n# 0 c (JMP+) l# HERE_NEXT (@) (N-) 
1 ;

● : else (>R) c NEW_WORD (R>) (!) ;

● DUP JMP+ call negate RET RET
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Macros: Higher-Order Functions

Source
: mapgen

c (DUP) c (>R) 

l# STRING_TAIL c (CALL) c 
(R>)

n 1 # c # c (+)

c NEW_WORD

c (DUP) c l c (CALL) (>R) c # 
(R>) c (+)

c (OVER) c (OVER) c (XOR)

c if (>R) c (JMP) (R>)

c else c (DROP) c (DROP) c ; ;

Object
(DUP) (>R) 

[LIT STRING_TAIL] (CALL) (R>)

[LIT 1] (LIT) (+) 

NEW_WORD

(DUP) l (CALL) >R (LIT) R> (+)

(OVER) (OVER) (XOR)

if >R (JMP) R>

else (DROP) (DROP) (RET) RET
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Macros: Higher-Order Functions 
(2)

Object
(DUP) (>R) 

[LIT STRING_TAIL] (CALL) (R>)

[LIT 1] (LIT) (+) 

NEW_WORD

(DUP) l (CALL) >R (LIT) R> (+)

(OVER) (OVER) (XOR)

if >R (JMP) R>

else (DROP) (DROP) (RET) RET

● : cipher n 2 mapgen 
encoder

● Compiles:

DUP >R 

call STRING_TAIL R> 

[LIT 1] + 

DUP call encoder [LIT 2] + 

OVER OVER XOR 

JMP0 JMP 

DROP DROP RET
● SCAN BlahBlahBlahBlahBlah 

   l INPUT @ cipher
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The Software: In Progress

● Source code:
– Extensions: 6671 bytes
– Simple virtual machine: 3903 bytes
– Metacompiler: 6641 bytes
– Simple RPC: 1507 bytes

● Total binary size, incl. Kernel: < 6000 
kwords (32-bit)
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Thank You!

Questions?


